
Frequency Response  of LTI Sys tems  (Continued 2)  

Since  the  frequency response  H is  s imply the  frequency spectrum of the  

impulse  response  h, if h is  real, then 
 
 

|H(Ω)| =  |H(−Ω)| and arg H(Ω) =  − arg H(−Ω) 
 
 

(i.e., the  magnitude  response  |H(Ω)| is  even and the  phase  response  

arg H(Ω) is  odd ).  
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Block Diagram Representa t ions  of LTI Sys tems  

Consider a  LTI sys tem with input x, output y, and impulse  response  h, and le t 

X , Y , and H denote  the  Fourier transforms of x, y, and h, respectively. 
 

Often, it is  convenient to represent such a  sys tem in block diagram form in 

the  frequency domain as  shown below. 

H(Ω) 
X (Ω) Y (Ω) 

Since  a  LTI sys tem is  completely characterized by its  frequency response, 

we typically label the  sys tem with this  quantity. 
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Frequency-Response  and Diffe rence-Equa t ion Representa t ions  of LTI Sys tems  
 
 

 

Many LTI sys tems of practical interes t can be  represented us ing an 

Nth-order linear difference equation with constant coefficients. 

Consider a  sys tem with input x and output y that is  characterized by an 

equation of the  form 
 

N M 

∑ bky(n − k) =  ∑ akx(n − k ).  
k= 0 k= 0 

 

Let h denote  the  impulse  response  of the  sys tem, and le t X , Y , and H 

denote  the  Fourier transforms of x, y, and h, respectively. 

One can show that H(Ω) is  given by 

H(Ω ) =  
Y (Ω) 

X (Ω) 
=  

∑M ak(e jΩ)−k ∑M ake− jkΩ 
k= 0 k= 0 

∑N 
k= 0 bk(e jΩ)−k 

=

 

.  

∑N 
k= 0 bke − jkΩ 

Each of the  numerator and denominator of H is  a  polynomial in e− jΩ. 

Thus, H is  a  rational function in the  variable  e− jΩ. 
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Section 10.6 
 

 
 
 

Application: Filtering  
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Filte ring 

In many applications, we want to modify the spectrum of a  s ignal by 

either amplifying or a ttenuating certa in frequency components . 
 

This  process  of modifying the  frequency spectrum of a  s ignal is  called 

filter ing. 

A system that performs a  filtering operation is  called a  filter . 

Many types  of filters  exis t. 

Frequency selective filters pass  some frequencies  with little  or no 

dis tortion, while  s ignificantly a ttenuating other frequencies . 
 

Several bas ic types  of frequency-selective  filters  include: lowpass, 

highpass, and bandpass . 
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Idea l Lowpass  Filte r  An ideal lowpass filter  eliminates  a ll baseband frequency components  

with a  frequency whose  magnitude  is  greater than some cutoff frequency, 

while  leaving the  remaining baseband frequency components  unaffected. 

Such a  filter has  a  frequency response H of the  form 

H(Ω ) =  

 
1  if |Ω| ≤ Ωc 
 

0 if Ωc <  |Ω| ≤ π, 

where  Ωc is  the  cutoff frequency. 
 

A plot of this  frequency response  is  given below. 
 
 

H(Ω) 
 
 

1 

Passband 

−π π 
Ω 

−Ωc Ωc 

Stopband S topband 
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Idea l Highpass  Filte r  An ideal highpass filter  eliminates  a ll baseband frequency components  

with a  frequency whose  magnitude  is  less  than some cutoff frequency, while  

leaving the  remaining baseband frequency components  unaffected. Such a  

filter has  a  frequency response H of the  form 

H(Ω) =  

 
1 if Ωc <  |Ω| ≤ π 

 

0 if |Ω| ≤ Ωc, 

where  Ωc is  the  cutoff frequency. 
 

A plot of this  frequency response  is  given below. 
 
 

H(Ω) 
 
 

 

1 

Stopband 

−π π −Ωc 
 
 

Passband Passband 

Ωc 
Ω 
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Idea l Bandpass  Filte r  An ideal bandpass filter  eliminates  a ll baseband frequency components  

with a  frequency whose  magnitude  does  not lie  in a  particular range, while  

leaving the  remaining baseband frequency components  unaffected. 
 

Such a  filter has  a  frequency response H of the  form 

H(Ω) =  

 
1 if Ωc1 ≤ |Ω| ≤ Ωc2 

 

0 if |Ω| <  Ωc1 or Ωc2 <  |Ω| <  π, 

where  the  limits  of the  passband are  Ωc1 and Ωc2. 

A plot of this  frequency response  is  given below. 
 

 

H(Ω) 
 
 

 

1 

Stopband 

−π 
Ω 

Stopband Passband 

π −Ωc2 −Ωc1 Ωc1 Ωc2 

Passband S topband 
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Part 11 
 

 
 
 

Z Trans form (ZT) 

Version: 2016-01-25 



Motiva t ion Behind the  Z Trans form 

Another important mathematical tool in the  s tudy of s ignals  and sys tems is  

known as  the  z transform. 
 

The z transform can be  viewed as  a  generalization of the Fourier 

transform. 
 

Due to its  more  general nature, the  z transform has  a  number of 

advantages over the  Fourier transform. 
 

Firs t, the  z transform representation exis ts  for some s ignals  that do not have  

Fourier transform representations.  So, we can handle  a  larger class of 

signals with the  z transform. 
 

Second, s ince  the  z transform is  a  more  general tool, it can provide  

additional insights beyond those  facilita ted by the  Fourier transform. 
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Motiva t ion Behind the  Z Trans form (Continued) 

Earlier, we saw that complex exponentia ls  are  e igensequences  of LTI 

sys tems. 
 

In particular, for a  LTI sys tem H with impulse  response  h, we have  that 
 

∞ 

H { zn}  =  H(z)zn where  H(z) =  ∑ 
n =−∞  

 

Previously, we referred to H as  the  sys tem function. 

As it turns  out, H is  the  z transform of h. 
 

Since  the  z transform has  a lready appeared earlier in the  context of LTI 

sys tems, it is  clearly a  useful tool. 
 

Furthermore, as  we will see, the  z transform has  many additional uses . 

h(n)z−n . 
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Section 11.1 
 

 
 
 

Z Trans form 
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(Bila te ra l) Z Trans form The (bila teral) z transform of the  sequence  x, denoted Z{ x}  or X , is  

defined as  
 

∞ 

X (z) =  ∑ 
n =−∞  

 

The inverse z transform is  then given by 

x(n)z−n . 

x(n) =  1 
2π j 

f  
 

 
 

Γ 
X (z)zn−1dz, 

where  Γ is  a  counterclockwise  closed circular contour centered at the  

origin and with radius  r such that Γ is  in the  ROC of X  .  
 

We refer to x and X as  a  z transform pair  and denote  this  re la tionship as  
 

 

x(n) ←→ X (z ).  
 

 

In practice, we do not usually compute  the  inverse  z transform by directly 

us ing the  formula  from above. Ins tead, we resort to other means  (to be  

discussed la ter ).  

ZT 
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Bila te ra l and Unila te ra l Z Trans form 
Two different vers ions  of the  z transform are  commonly used: 

1 the  bilateral (or two-sided) z transform; and 

the  unilateral (or one-sided) z transform. 2 

The unila teral z transform is  most frequently used to solve  sys tems of 

linear difference  equations  with nonzero initia l conditions. 
 

As it turns  out, the  only difference  between the  definitions  of the  bila teral 

and unila teral z transforms is  in the  lower limit of summation. 
 

In the  bila teral case, the  lower limit is  −∞, whereas  in the  unila teral case, 

the  lower limit is  0. 
 

For the  most part, we will focus  our a ttention primarily on the  bila teral z 

transform. 
 

We will, however, briefly introduce  the  unila teral z transform as  a  tool for 

solving difference  equations. 
 

Unless  otherwise  noted, a ll subsequent references  to the  z transform 

should be  unders tood to mean bilateral z transform. 
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Rela t ionship Be tween Z and Fourie r  Trans forms  Let X and XF denote  the  z and (DT) Fourier transforms of x, respectively. 

The  function X (z) evaluated at z =  e jΩ (where  Ω is  real) yields  XF(Ω). 

That is , 

X (z)|z= e jΩ =  XF(Ω). •Due to the  preceding rela tionship, the  Fourier transform of x is  

sometimes  written as  X (e jΩ). 

•The function X (z) evaluated at an arbitrary complex value  z =  re jΩ 

(where  r =  |z| and Ω =  arg z) can also be  expressed in terms of a  

Fourier transform involving x. In particular, we have  

X (re jΩ) =  X ′ (Ω), F 
 

where  XF
′  is  the  (DT) Fourier transform of x′(n) =  r−nx(n ).  

So, in general, the  z transform of x is  the  Fourier transform of an 

exponentia lly-weighted vers ion of x. 

Due to this  weighting, the  z transform of a  sequence  may exis t when the  

Fourier transform of the  same sequence  does  not. 
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